MODIFIED LATIN SQUARE TYPE PBIB DESIGNS

K. R. AGGARWAL

Punjab Agricultural University, Ludhiana (India) (Received in August, 1972; Accepted in November, 1975)

1. Introduction

In this paper, we give a three associate-class association scheme, by slightly modifying the definition of $L_i(s)$ association scheme given by Bose and Shimamoto (1952) for the s^2 symbols. We shall call the new association scheme as modified Latin-square-type $(ML_i(s))$ association scheme with i constraints and the corresponding PBIB designs as $ML_i(s)$ designs. Two series of $ML_i(s)$ designs with their usefulness as confounded s^2 symmetrical factorial experiments is also discussed, therein. For the definitions of the various statistical terms henceforth used, we refer to Raghavarao (1971).

2. $ML_i(s)$ DESIGNS

We define $ML_i(s)$ association scheme for the s^2 symbols as following:

Definition 2.1. Let s^2 symbols be arranged in $s \times s$ square array

	1.	2	•••	•••	's*
	s+1	s+2	•••	• • • • •	2s
	-	_	•••	•••	
(2.1)					
		· 	•••	•••	
•		_	•••	•••	
	_		•••	•••	 s ²
	s^2-s+	$1 s^2 - s + 2$	•••	•••	S ²

Let (i-2) mutually orthogonal latin-squares (MOLS) of orders exist. Let these (i-2) MOLS be superimposed on this square array. Two symbols will be called

(1) first associates, if they occur in the same row or column of the array;

- (2) second associates, if they occur in positions occupied by the same letter in any of the (i-2) MOLS; and
- (3) third associates, otherwise.

The parameters of the $ML_i(s)$ association scheme will be $n_i=2(s-1), n_2=(i-1) (s-2), n_3=(s-1) (s-i+1),$

$$P_{1} = \begin{bmatrix} (s-2) & (i-2) & (s-i+1) \\ (i-2) & (i-2) & (i-3) & (i-2) (s-i+1) \\ (s-i+1) & (i-2) & (s-i+1) & (s-i) & (s-i+1) \end{bmatrix},$$

$$(2.2) P_{2} = \begin{bmatrix} 2 & 2(i-3) & 2(s-i+1) \\ 2(i-3) & (s-2)+(i-3) & (i-4) & (i-3) & (s-i+1) \\ 2(s-i+1) & (i-3) & (s-i+1) & (s-i) & (s-i+1) \end{bmatrix},$$

$$P_{3} = \begin{bmatrix} 2 & 2(i-2) & 2(s-i) \\ 2(i-2) & (i-2) & (i-3) & (i-2) & (s-i) \\ 2(s-i) & (s-i) & (i-2) & (s-i) \end{bmatrix}.$$

Let N be the incidence matrix of a $ML_i(s)$ design with the parameters v, b, r, k, λ_1 , λ_2 , λ_3 . It can be verified that the characteristic roots of NN' will be $\theta_0 = rk$, $\theta_1 = r + (s-2)\lambda_1 - (i-2)\lambda_2 - (s-i+1)\lambda_3$, $\theta_2 = r - 2\lambda_1 + (s-i+2)\lambda_2 - (s-i+1)\lambda_3$, $\theta_3 = r - 2\lambda_1 - (i-2)\lambda_2 + (i-1)\lambda_3$, with their respective multiplicities $a_0 = 1$, $a_1 = 2(s-1)$, $a_2 = (i-2)(s-1)$, $a_3 = (s-1)(s-i+1)$.

3. Construction Methods of $ML_i(s)$ Designs

We prove the following theorem:

Theorem 3.1: A series of $ML_i(s)$ designs with the parameters (3.1) $v=s^2$, $b=(i-2)_s$, r=(i-2), k=s, $\lambda_1=0,\lambda_2=1$, $\lambda_3=0$, can be constructed when (i-2) MOLS exist.

Proof: Let each of the (i-2) MOLS be superimposed on the $s \times s$ array given in (2.1) of the s^2 symbols of the $ML_i(s)$ association scheme. Then the (i-2)s sets, each of s symbols, formed by symbols corresponding to the different letters of the latin squares, constitute the series of $ML_i(s)$ designs with the parameters given in (3.1).

We define pseudo $ML_s(s)$ association scheme as following:

Definition 3.1. Let a latin square be superimposed on the $s \times s$ array given in (2.1) of s^2 symbols. Two symbols will be called

(1) first associates, if they occur in the same row or column of the array;

- (2) third associates, if they occur in positions occupied by the same letter of the latin square; and
- (3) second associates, otherwise.

The parameters of the pseudo $ML_s(s)$ association scheme, will be the same as given in (2.2), by taking i=s. The pseudo $ML_s(s)$ association scheme will be the usual $ML_s(s)$ association scheme when s is a prime or a prime power. The PBIB designs with the pseudo $ML_s(s)$ association scheme will be called the pseudo $ML_s(s)$ designs.

We prove another theorem as following:

Theorem 3.2: A pseudo $ML_s(s)$ design with the parameters (3.2) $v=b=s^2$, r=s-1=k, $\lambda_1=0$, $\lambda_2=1$, $\lambda_3=0$ can be constructed when (s+1) is a prime or a prime power.

Proof: Let s^2 symbols be arranged in an $s \times s$ array. As (s+1) is a prime or prime power, s MOLS of order (s+1) will exist. Out of these s MOLS, (s-1) latin squares can always be written in the form having different letters in the diagonal positions and one latin square will have all zeroes in the diagonal positions.* Let the first s rows and the first s columns of these MOLS be superimposed on the $s \times s$ array. Then $s^2 + s$ sets, s^2 sets being of the size (s-1) and s sets being of the size s, can be formed by the symbols corresponding to different letters of the latin squares. Deleting s sets each of size s from these $s^2 + s$ sets, we get the pseudo $ML_s(s)$ design with the parameters given in (3.2).

Illustration: Let us construct $ML_4(4)$ design with the parameters

(3.3)
$$v=16=b, r=3=k, \lambda_1=0, \lambda_2=1, \lambda_3=0.$$

Then the diagonal elements of the latin-square L_i will be $(1+x^{i-1})$ $(0, 1, x, \ldots, x^{s-1})$, $i=1, 2, \ldots, s$. Clearly all the diagonal elements will be distinct except in the case when $1+x^{i-1}=0$.

Let the 16 symbols be represented by

The four MOLS of order 5 in the form mentioned in the proof of the theorem 3.2 are

	0	1	2	4	3		0	2	4	3	1
	1	2	3	0	4		.1	3	0 .	4	2 -
•	2	3	4	1	0.	,	, 2	4	1.	0.	3,
	4	0	- 1	. 3	2		4	1	3	. 2	0
	3	4	0	2	1		3	0	2	1	4 .
(3.5)			•			,					٠
	. 0	4	3	1	2		, 0	. 3	1	2	4
	1	0	4	2	3		1	4	2 .	3	0
•	2	1	0	3	4	,	2	0	3	4	1 .
	4	3	2	.0	1		4	2	0	1	3
	3	2	1	4	0		3	1	4	0	2

Superimposing the first four rows and first four columns of these MOLS on the 4×4 square array given in (3.4), we get the following 16 sets each of size 3 symbols, after deleting 4 sets each of size 4:

These 16 sets constitute the $ML_4(4)$ design with the parameters given in (3.3).

4. Confounded s² Symmetrical Factorial Experiments

Let s^2 treatment combinations of the s^2 symmetrical factorial experiments in factors A, B, each at 0, 1,..., (s-1) levels, represent

the s^2 symbols of the $ML_i(s)$ association scheme. Let $s \times s$ square array be

A latin square of order s when superimposed on this array will partition (by forming sets of treatment combinations corresponding to the same letter of the latin square) the s^2 treatment combinations into s sets each of s treatment cominations confounding (s-1) degrees of freedom pertaining to the interaction AB. We shall say that the confounded (s-1) degrees of freedom belong to that particular latin square. Thus when (i-2) MOLS are available, we can have (i-2) replications of the s^2 symmetrical factorial experiment confounding (i-2) (s-1) degrees of freedom pertaining to the interaction AB or belonging to (i-2) MOLS (comparisons for each of these d.f. will be mutually othogonal) and the other (s-1) (s-i+1) degrees of freedom pertaining to the interaction AB will remain unconfounded. The series of $ML_i(s)$ designs given in Theorem 3.1 can be used as the confounded s^2 symmetrical factorial experiments.

Following Shah (1958), the relative loss of information on each of (i-2) (s-1) degrees of freedom belonging to the interaction AB or belonging to (i-2) MOLS, will be 1/(i-2) and the remaining (s-1) (s-i+1) degrees of freedom belonging to the interaction AB and 2(s-1) degrees of freedom belonging to the main effects A, B remain unconfounded.

An advantage of the new series of $ML_i(s)$ designs given in Theorem 3.1 is that the s^2 symmetrical factorial experiments can be constructed in smaller number of replications.

The series of pseudo $ML_s(s)$ designs can also be used as the confounded s^2 experiments in (s-1) replications when (s+1) is a prime or a prime power. The relative loss of information on each of 2(s-1) degrees of freedom of the main effects A, B is $1/(s-1)^2$ and on each of (s-2) (s-1) degrees of freedom other than (s-1) degrees of freedom pertaining to the interaction AB is $(s+1)/(s-1)^2$ and on each of these (s-1) degrees of freedom is $1/(s-1)^2$. These (s-1) degrees of freedom pertaining to the interaction AB, will be carried by the s sets each of s treatment combinations deleted to obtain

the s^2 sets in the proof of Theorem 3.2. The pseudo $ML_6(6)$ and pseudo $ML_{10}(10)$ designs with the parameters

(4.2)
$$v = 36 = b, \quad r = 5 = k, \ \lambda_1 = 0, \ \lambda_2 = 1, \ \lambda_3 = 0$$

and

(4.3)
$$v=100=b$$
, $r=9=k$, $\lambda_1=0$, $\lambda_2=1$, $\lambda_3=0$

are useful PBIB designs which can be taken as the confounded 62 and 10² symmetrical factorial experiments.

REFERENCES

Bose, R.C. and Shimamoto, T. (1952): Classifications and analysis of partially balanced incomplete block designs with two associate classes. Jour. Am. Stat. Assn. 47, 151-184.

Raghavarao, D. (1971) : Constructions and Combinatorial Pro-blems in Design of Experiments. Wiley,

New York.

Shah, B.V. (1958) : On balancing in factorial experiments.

Ann. Math. Stat. 29, 766-779.